Temperature dependence of photoluminescence intensity from AlGaInP/GaInP multi-quantum well laser structures

C.Y. Liu,*, Shu Yuan, J.R. Dong, S.J. Chua

*a School of Materials Engineering, Nanyang Technological University, Singapore, 639798, Singapore
b Institute of Materials Research and Engineering, 3 Research Link, Singapore, 117602, Singapore

Abstract

AlGaInP/GaInP multiple quantum well laser structure was grown by low-pressure metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine. Photoluminescence (PL) measurements were performed from 10 to 230 K. The PL energy increased with temperature from 10 to 70 K and decreased above 70 K. The former was attributed to thermal activation of trapped carriers due to localization in the quantum wells, while the latter was attributed to temperature-induced band-gap shrinkage. The PL intensity as a function of temperature was fitted by employing two nonradiative recombination mechanisms with good agreement, resulting in two activation energies that correspond to losses of photogenerated carriers to nonradiative centers.

1. Introduction

AlGaInP/GaInP laser diodes (LDs) grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD) have been intensively developed for 630–700 nm wavelength range applications, such as laser pointers, bar-code readers and digital versatile disk players [1–4].

In most cases, AlGaInP/GaInP laser structures are produced by employing MOCVD with hazardous group-V hydride gases, such as arsine (AsH₃) and phosphine (PH₃). The hazards involved have been a major concern in the MOCVD process. Thus, less toxic organic group-V MOCVD sources, such as tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP), have been used to replace group-V hydride because of reduced hazards [5–11]. It has been shown that devices grown with TBAs and TBP have demonstrated state-of-the-art performances in InGaAsP and GaInAs/GaAs/GaInP lasers [7–9]. However, there have been few reports on high-quality AlGaInP/GaInP quantum well structures grown by MOCVD with TBAs and TBP, which can be used for active layers of devices, such as light emitting diodes and LDs [10,11]. To date, only Itaya et al. [10] have reported low-temperature (77 K) pulsed...
operation of AlGaInP/GaInP lasers grown by MOCVD with TBAs and TBP. Their results show that, unlike conventional MOCVD growth with AsH₃ and PH₃, AlGaInP/GaInP lasers grown by MOCVD with TBAs and TBP have problems regarding generation of nonradiative recombination centers in the Al-containing cladding or barrier layers [10]. Furthermore, the threshold current density of AlGaInP/GaInP lasers grown with TBAs and TBP is very sensitive to the temperature, which is ascribed to higher nonradiative recombination rates at higher temperatures, since the nonradiative recombination centers could be activated by increasing temperature [10]. Such results indicate that the temperature-dependent behavior of carriers in MOCVD-grown AlGaInP/GaInP QWs with TBAs and TBP is important for device applications. Therefore, a systematic investigation of the photoluminescence (PL) properties of this material system at different temperatures is necessary for understanding its light emission mechanisms. However, to the best of our knowledge, there has been no report on the temperature-dependent PL properties of AlGaInP/GaInP laser structures grown by MOCVD with TBAs and TBP.

In this work, an AlGaInP/GaInP multiple quantum well (MQW) laser structure was grown by low-pressure MOCVD (LP-MOCVD) with TBAs and TBP as group-V sources. Temperature-dependent PL measurements were performed in the temperature range from 10 to 230 K. A two nonradiative recombination mechanisms model was presented to interpret the PL emission behavior over the experiment temperature range.

2. Material growth and experimental procedure

The MQW laser structure is shown in Table 1. The wafer was grown by a low-pressure horizontal MOCVD system with planetary rotation to ensure the uniformity of the grown epitaxial materials. AlGaInP epilayers were grown on n⁺-GaAs (1 0 0) substrates 7° off towards (1 1 1) A to suppress the spontaneous ordering in the GaInP and AlGaInP epilayers. Trimethylgallium, trimethylindium, and trimethylaluminum were used as group-III sources; TBAs and TBP were utilized as group-V sources. Silane (SiH₄) and diethylzinc (DEZn) were the n-type and p-type doping sources, respectively. H₂ was used as carrier gas. The growth temperature was 675°C measured by a thermocouple inserted in the graphite susceptor. The growth chamber pressure was set at 100 mbars. The V/III ratio was 75 and the growth rate was about 1 μm/h. The choice of V/III ratio was as follows: GaInP was first grown lattice-matched to GaAs substrate. AlGaInP was subsequently grown by introducing Al source while Ga source flow rate was reduced correspondingly to keep the AlGaInP lattice matched to GaAs substrates. The optical quality of AlGaInP epilayers strongly depends on the V/III ratio as in the case of phosphine-based AlGaInP. The PL intensity increases dramatically with increasing V/III ratio, and saturates above 75. Therefore, later all the AlGaInP layers were grown at V/III ratio of 75.

The PL measurements were performed in the temperature range from 10 to 230 K using the 488 nm line of a 40 mW Ar⁺ laser, a closed cycle cryostat, a 0.5 m spectrometer, a thermal electric cooled silicon detector, and a lock-in amplifier. Before the PL measurement, the top contact layer and most part of the top cladding layer were

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Sample structure</th>
<th>Thickness (nm)</th>
<th>Doping concentration (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>150</td>
<td>Zn: 1 × 10¹⁹</td>
<td></td>
</tr>
<tr>
<td>GaInP</td>
<td>100</td>
<td>Zn: 2 × 10¹⁸</td>
<td></td>
</tr>
<tr>
<td>(Al₀.₇Ga₀.₃)₀.₅₂In₀.₄₈P</td>
<td>1200</td>
<td>Zn: 1 × 10¹⁸</td>
<td></td>
</tr>
<tr>
<td>(Al₀.₇Ga₀.₃)₀.₅₂In₀.₄₈P</td>
<td>50</td>
<td>Undoped</td>
<td></td>
</tr>
<tr>
<td>(Al₀.₄Ga₀.₆)₀.₅₂In₀.₄₈P</td>
<td>80</td>
<td>Undoped</td>
<td></td>
</tr>
<tr>
<td>Ga₀.₄₅In₀.₅₅P</td>
<td>3 periods, 8/10</td>
<td>Undoped</td>
<td></td>
</tr>
<tr>
<td>(Al₀.₄Ga₀.₆)₀.₅₂In₀.₄₈P</td>
<td>80</td>
<td>Undoped</td>
<td></td>
</tr>
<tr>
<td>(Al₀.₇Ga₀.₃)₀.₅₂In₀.₄₈P</td>
<td>30</td>
<td>Undoped</td>
<td></td>
</tr>
<tr>
<td>GaInP</td>
<td>60</td>
<td>Si: 2 × 10¹⁸</td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>200</td>
<td>Si: 2 × 10¹⁸</td>
<td></td>
</tr>
<tr>
<td>n⁺-GaAs substrate</td>
<td>(1 0 0), 7° off axis</td>
<td>towards (1 1 1) A</td>
<td></td>
</tr>
</tbody>
</table>
etched at 22°C by H₃PO₄:H₂O₂:5H₂O and HCl:H₃PO₄, respectively, the total etch depth was about 1 μm.

3. Modeling of interband transition energies and PL intensity

The knowledge of the interband transition energy is important in determining whether the observed PL is from the interband transition or from other radiative recombination channels. The subband energies Eᵣ at the band edge of QW were calculated by Schrödinger-like equation using the envelope function approximation method as given below [12]

\[
-\frac{\hbar^2}{2m^*_r} \left(\frac{1}{m^*_r} \frac{d^2\psi_r}{dz^2} \right) + U_r \psi_r = E_r \psi_r,
\]

where the subscript r denotes either the electrons (r = e), or the heavy holes (r = hh) or the light holes (r = lh). \(\psi_r(z) \) denotes the wavefunction, \(U_r \) is the subband energy in the quantum well, and \(m^*_r \) is the corresponding carrier effective mass in the z direction. A conduction band offset of 0.65 was used in the calculation [13]. The values for effective masses were determined by interpolations of the binary parameters by Vegard’s Law. The parameters used in the calculation are listed in Table 2. After the subband energy \(E_r \) was calculated, the interband transition energy was evaluated and compared to measured PL photon energy.

The temperature-dependent energy gap of a semiconductor alloy is given by Varshni relation [14]:

\[
E_g(T) = E_g(T = 0) - \frac{\alpha T^2}{T + \beta},
\]

where \(\alpha \) and \(\beta \) are constants.

Temperature-dependent band-gaps of binary alloys GaP, AlP and InP were calculated following Eq. (2). We choose \(\alpha = 0.5771 \text{ MeV/K} \), \(\beta = 372 \text{ K} \) for both GaP and AlP, and \(\alpha = 0.363 \text{ MeV/K} \), \(\beta = 162 \text{ K} \) for InP [15,16]. For the ternary semiconductor alloys GaInP and AlInP discussed here, the temperature-dependence of the energy gap on alloy composition was assumed to fit a simple quadratic form [15]:

\[
E_g(A_{1-x}B_xC) = (1 - x)E_g(A) + xE_g(B) - x(1 - x)P,
\]

where the so-called bowing parameter \(P \) accounts for the deviation from a linear interpolation between the two binaries A and B. Here, we choose the bowing parameter \(P = 0.65 \text{ eV} \) for GaInP and \(P = -0.48 \text{ eV} \) for AlInP [15].

Similarly, the temperature-dependent band-gap energy of (Al₀.₄Ga₀.₆)₀.₅₂In₀.₄₈P barrier layer discussed here was determined by an interpolation of the ternary alloy of Al₀.₅₂In₀.₄₈P and Ga₀.₅₂In₀.₄₈P with the bowing parameter \(P \) of 0.18 eV as shown below [15]:

\[
E_g[(Al_xGa_{1-x})₀.₅₂In₀.₄₈P] = xE_g(A₀.₅₂In₀.₄₈P) + (1 - x)E_g(Ga₀.₅₂In₀.₄₈P) - x(1 - x)P.
\]

In this work, the integrated PL intensity as a function of inverse temperature was fitted with the following model involving two nonradiative recombination mechanisms described by [17–19]

\[
I = I_0 \left[1 + C_1 \exp(-E_1/k_BT) + C_2 \exp(-E_2/k_BT) \right]^{-1},
\]

where \(I \) is the integrated PL intensity, \(I_0 \) is the integrated PL intensity at the low-temperature limit, \(C_1 \), \(C_2 \) are fitting constants, \(E_1 \) and \(E_2 \) are the activation energies at the two different temperature regions, \(k_B \) is the Boltzmann constant, and \(T \) is the sample temperature.

Table 2
Material parameters of GaP, InP and AlP used in the calculations [15,16]

<table>
<thead>
<tr>
<th></th>
<th>GaP</th>
<th>InP</th>
<th>AlP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_g) at 300 K</td>
<td>2.78 eV</td>
<td>1.34 eV</td>
<td>3.56 eV</td>
</tr>
<tr>
<td>(E_g) at 0 K</td>
<td>2.857 eV</td>
<td>1.411 eV</td>
<td>3.637 eV</td>
</tr>
<tr>
<td>(m_e) at 300 K</td>
<td>0.158m₀</td>
<td>0.077m₀</td>
<td>0.212m₀</td>
</tr>
<tr>
<td>(m_e) at 300 K</td>
<td>0.54m₀</td>
<td>0.45m₀</td>
<td>0.513m₀</td>
</tr>
<tr>
<td>(m_e) at 300 K</td>
<td>0.162m₀</td>
<td>0.089m₀</td>
<td>0.211m₀</td>
</tr>
<tr>
<td>(m_e) at 77 K</td>
<td>0.17m₀</td>
<td>0.089m₀</td>
<td>0.212m₀</td>
</tr>
<tr>
<td>(m_e) at 77 K</td>
<td>0.67m₀</td>
<td>0.56m₀</td>
<td>0.513m₀</td>
</tr>
<tr>
<td>(m_e) at 77 K</td>
<td>0.17m₀</td>
<td>0.12m₀</td>
<td>0.211m₀</td>
</tr>
</tbody>
</table>
4. Results and discussion

X-ray diffraction spectroscopy measurements were used to check the growth quality. Fig. 1 shows a typical X-ray diffraction spectrum of an \((\mathrm{Al}_{0.7}\mathrm{Ga}_{0.3})_{x}\mathrm{In}_{1-x}\mathrm{P})\) epilayer on GaAs substrate. The Pendellösung fringes can be observed indicating the abrupt interface between AlGaInP and GaAs and uniform composition along the growth direction. By simulating the fringes based on dynamical theory, the \((\mathrm{Al}_{0.7}\mathrm{Ga}_{0.3})_{x}\mathrm{In}_{1-x}\mathrm{P}\) thickness of 435 nm and In composition of 48.3% can be obtained.

Fig. 2 shows the PL spectra of the laser structure at 10, 100 and 230 K, respectively. The 10 K spectrum is dominated by a single narrow sharp emission peak at 1.995 eV with the full-width at half-maximum of 20.85 meV. The luminescence was observed up to about 230 K.

The interband transition energy as a function of temperature was calculated using the model described in Section 3. The results (line) are compared to the PL peak position (dots) in Fig. 3. The calculated interband transition energy decreases monotonously due to band-gap shrinkage with temperature as expected from Eq. (2). However, in the low-temperature region the PL peak position increases with temperature, reaching a maximum at 70 K. The blueshift from 10 to 70 K is 3 MeV. In the higher-temperature region from 70 K and above, the PL peak decreases with temperature, following the trend of the calculated interband transition energy. The blueshift phenomenon at low-temperature region was also reported in bulk GaInP [20], in InGaN [21], and in GaAs quantum wells [22,23]. It is believed to be caused by the localization of the carriers at low temperatures. A combination of possible composition fluctuation and well width fluctuation and interface roughness of the QWs produces an effective band-gap modulation in the growth direction and thus causes local potential fluctuations, giving rise to a statistical distribution of local potential minima. At low temperatures, the minima act as trap sites. Photogenerated carriers
drift towards the potential minima as drift times are much shorter than radiative recombination times, the carriers are trapped by these potential fluctuations, i.e., a kind of localization [23]. In the low-temperature region, when temperature is increased, more carriers are thermally activated from localized regions and are able to occupy higher-energy states in the band-gap modulation scheme. Consequently, QW peak should be broadened and shifted to higher energies, i.e., blueshift. We concluded that the PL peak blueshift in our sample was due to thermally activated trapped carriers in localized regions, blueshifting the PL peak. As temperature was further increased to above 70 K, most of the trapped carriers attained more thermal energy and were “thermalized” out from the local potential traps. These free carriers recombined in the quantum well through the interband transition recombination process. The interband transition energy decreased monotonously, as the band-gap decreased with temperature according to Eq. (2), i.e., when \(T \approx 70 \) K, the PL peak began to redshift.

Fig. 4 shows the integrated PL intensity as an inverse function of temperature. The dots are the experimental data. At low temperatures, the integrated PL intensity dropped slowly with temperature. At high temperatures, it decreased more rapidly with temperature. This behavior suggests that the presence of two nonradiative recombination mechanisms, corresponding to two different activation energies at these different temperature regions. The PL intensity as a function of inverse of temperature was fitted by using the model outlined in Section 3. The solid line shown in Fig. 4 is the best fit for the entire temperature range, which yielded \(C_1 \) of 3.9 and \(C_2 \) of 1565 and activation energies \(E_1 \) of 9 MeV and \(E_2 \) of 90 MeV, respectively. \(C_1 \) and \(E_1 \) correspond to the low-temperature range; and \(C_2 \) and \(E_2 \) to the higher-temperature range. The temperature-dependent PL intensity could be explained as follows: since the top contact layer of the wafer and most part of the top cladding layer were etched before PL measurements, the excitation laser beam (wavelength = 488 nm, photon energy \(\sim 2.54 \) eV) was absorbed in the remaining top cladding layer (p-type (Al0.4Ga0.6)0.52In0.48P, about 450 nm left after wet etching) and the (Al0.4Ga0.6)0.52In0.48P barrier layers and the Ga0.49In0.51P quantum wells; thus photogenerated carriers originating from these layers will all contribute to the carrier recombination in the GaInP quantum well. At low temperatures, the photogenerated carriers were captured by the localized potential minima that acted as active radiative recombination centers, but some of the photogenerated carriers were lost to nonradiative recombination centers, reducing the PL intensity. This mechanism had an activation energy \(E_1 = 9 \) MeV. At high temperatures, however, another type of nonradiative recombination center was thermally activated, which trapped photogenerated carriers before they recombined radiatively, thus reducing the PL intensity significantly. Similar behavior of temperature-dependent PL intensity was observed in AlGaInP/GaInP quantum wells by Michler et al. [19] who reported that the activation energy \(E_2 \) is equal to one-half of the total confinement energy \(\Delta E_{TOL} \) of the electron–hole pair in the quantum well. They concluded that carriers were lost from the quantum well to the barrier layers. In our work, the total confinement energy \(\Delta E_{TOL} \) can be calculated as \(\Delta E_{TOL} = \) energy gap of the barrier—PL energy. \(\Delta E_{TOL}/2 \) was found to be \(\sim 111 \) MeV, insensitive to temperature variations. This is larger than the
activation energy E_2 (90 MeV) determined by fitting to data in Fig. 4. The photogenerated carriers were likely lost to the barriers, where they were possibly captured by nonradiative centers. The nature of the nonradiative centers is not clear from this work; we suspect they originated from defects and impurities in the AlGaInP barrier layer during the growth. More work on defects and impurities on AlGaInP grown by MOCVD with TBAs and TBPs is needed to yield more information on the nature of the nonradiative centers.

5. Conclusions

In summary, AlGaInP/GaInP quantum well laser structure was grown by LP-MOCVD using TBAs and TBP. X-ray diffraction was used to check the quality of the growth. Temperature-dependent PL measurements from the laser structures were carried out systematically from 10 to 230 K. The interband transition energy was calculated by using the envelope function approximation method. Blueshift of PL energy with increasing temperature from 10 to 70 K was observed and was interpreted based on thermalization of localized carriers. A model of two nonradiative recombination mechanisms was used to fit the temperature-dependent PL intensity with good agreement with the experimental data.

Acknowledgements

The authors thank Dr. Qu Yi and Dr. S.F. Yu for valuable discussions and careful reading of the manuscript. We also thank Dr. J.H. Teng and Mr. R. Tew for help in the measurement of emission spectrum of the laser diodes.

References